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Abstract

An increasing number of cities are transitioning from fossil fuel-powered buses for public transport to battery electric buses.
Evaluating the energy demand of buses has become an important prerequisite for the planning and deployment of large electric
bus fleets and the required charging infrastructure. A number of state-of-the-art approaches to determining the energy requirements
of electric buses use individual specific energy demand values or rely on standard driving cycles, though these do not consider local
bus route characteristics. Others require high-resolution measurements of the vehicles’ driving profiles, which is impractical for
large bus fleets. This paper presents a longitudinal dynamics model to calculate the energy demand for electric buses. The model is
designed to be easily applied to large bus networks using real data sources that are commonly available to bus transit operators. This
data can be derived from low-resolution data collected from day-to-day operations, where only the arrival and departure time of the
buses at each bus stop are available. This approach offers a practical alternative to state-of-the-art methods and requires no high-
resolution velocity profiles, which are difficult to obtain, while still taking into account the details of the operational characteristics
of the transportation network under consideration. The application of the model is demonstrated in a case study to electrify the
complete public bus network in Singapore. The results showed that the heterogeneity of driving conditions observed in a large
network leads to a high variance in energy requirements between different bus lines and at different times of day. This confirms the
need to take the characteristics of each individual bus route into account. In the case-study, a fully electric public bus fleet would
require about 1.4 GWh per day for revenue service, which is about one per cent of Singapore’s daily electricity demand. Another
finding is that 50 % of the bus lines require less than 40 kWh per terminus-to-terminus journey, which indicates a good potential
for fast opportunity charging during layover time. The results of the model should serve as the basis for further studies into battery
sizes, charging strategies and charging infrastructure requirements.
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Acronyms

AB articulated bus
BEB battery electric bus
DD double-decker bus
EV electric vehicle
GHG greenhouse gases
ICE internal combustion engine
MAD median absolute deviation
SD single-decker bus
WTW Well to Wheel

Nomenclature

A cross-section area of the vehicle (m2)
a+ acceleration rate (m/s2)
a− deceleration rate (m/s2)
Cd drag coefficient of the vehicle
D distance between two consecutively visited bus stops

(m)
d0 distance travelled during the acceleration phase (m)
d1 distance travelled during the constant speed phase (m)
d2 distance travelled during the deceleration phase (m)
f rolling resistance
g gravitational acceleration (m/s2)
∆h elevation difference between two consecutively visited

bus stops (m)
M total mass of the vehicle including load (kg)
Mcurb curb mass of the vehicle including battery (without

passengers) (kg)
mpax mass of a passenger (kg)
nh number of intermediate halts during a trip
npax number of passengers
Paux auxiliary power (including air-conditioning) (W)
rreg regeneration factor
∆tdwell dwell time at a bus stop (s)
∆ttrip trip duration between two consecutively visited bus

stops (s)
v1 coasting speed (m/s)
α inclination angle of the road
δ inertia factor
ηm average efficiency of the motor
ηPE average efficiency of the inverter
ηt average efficiency of the drivetrain and gearbox
ρ air density (kg/m3)

1. Introduction

The continuous demographic growth in cities leads to an in-
crease in the number of private vehicles on the streets, exacer-
bating road congestion and parking space scarcity issues. This
is why implementing policies that favour public transport as a
preferred mode of transportation is one of the priorities of pol-
icymakers to improve urban transportation. Is suitably dimen-
sioned with regards to passenger occupancy, public transporta-
tion systems have several advantages over private vehicles: bet-

ter road space usage, higher energy efficiency and lower green-
house gases (GHG) emissions per passenger-kilometre. Never-
theless, electric mobility in public transport systems still has a
long way to go because — apart from already electrified modes
such as metro, trams or trolleybuses — diesel buses still con-
stitute the majority of vehicles in urban public transport vehicle
fleets.

Increased concerns about the impact of emissions from
fossil-fuelled internal combustion engine (ICE) vehicles on the
global environment and public health [1] as well as continu-
ous improvements in the economic viability of electric vehicles
(EVs) have lead to a growing interest in electric mobility from
researchers, industry players and consumers [2]. EVs can help
to alleviate a number of contemporary issues with road-bound
transportation that especially affect urban environments. With
no direct tailpipe emissions, they do not cause health hazards
or olfactory discomfort to passengers in the immediate vicinity
of the vehicle. Their heat and noise emissions are significantly
lower as well. On top of that, passengers experience greater
comfort due to the lack of motor vibrations [3]. From an en-
vironmental perspective, EVs are able to bring important Well
to Wheel (WTW) fossil fuel savings and reduce GHG emis-
sions [4, 5]. The continued rise of renewable energy sources in
the electricity mix is further contributing to the sustainability of
electric mobility on a long-term basis.

In recent years, bus operators have been showing a growing
interest in the use of fully electric buses in their fleets. Numer-
ous pilot projects are currently being rolled out in cities around
the world [6–8]. With traditional diesel buses, detailed energy
demand calculations were not necessary as the range of a diesel
bus with a full tank exceeds the daily fuel consumption. The
exact value varies with the bus model, but typical tank capac-
ities for diesel buses vary between 200 L and 600 L. A fuel
economy of between 40 L/100 km and 60 L/100 km results in
a driving range from 330 km to 1500 km in the worst and best
case respectively. More realistically, an average tank capacity
of 300 L and fuel economy of 50 L/100 km yields an available
range of 600 km, which is quite enough for a day of operation.
Besides, refuelling only takes a few minutes.

The additional constraints associated with the range and
charging limitations of battery electric buses (BEBs) pose a
challenge for the electrification of existing bus fleets. An elec-
tric bus network requires a charging infrastructure and schedule
that does not jeopardise bus operation, but is not too costly ei-
ther. The complexity increases proportionate to the size of the
bus network under consideration. In order to plan an electric
bus network and select the right battery capacity of the BEBs,
the energy demand of each bus line has to be determined over
the entire day under different traffic conditions.

Previous studies mostly used one of the following three ap-
proaches to determine the energy demand for electric buses.

1. Calculation of the average energy demand per unit of dis-
tance or time

This is the simplest approach. A single value is used for the
average energy demand for each bus type (e.g. single-decker
or double-decker) on all routes. This approach is often used in
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studies focusing on BEB scheduling problems. In a case study
in Penghu, Taiwan, Ke et al. [9] calculated the energy require-
ments of local bus lines based on the route distance and two
fixed specific energy demand values for large- and medium-
sized e-buses respectively. Paul and Yamada [10] used a sin-
gle value for the average energy demand taken from the Min-
istry of Land, Japan. Similarly, Wang et al. [11] used a sin-
gle value, assuming the energy demand to be proportional to
the total driving distance with no variations during the day. As
part of studying charging infrastructure requirements for elec-
tric buses, Xylia et al. [12] calculated the energy demand of the
entire bus network in Stockholm, Sweden. This calculation was
based on real trip schedules but was also assumed to be propor-
tional to the trip distance.

Though this approach is very simple to implement, using av-
erage energy demand values only yields a rough estimate of the
energy demand and does not consider traffic conditions at dif-
ferent times of the day or route characteristics such as ascents or
descents. Moreover, it ignores the fact that the auxiliary power
is constantly being drawn, mainly for air conditioning or heat-
ing. Thus, the energy demand due to the auxiliary power de-
pends on the trip duration instead of the trip distance. During
peak hours, a bus journey could take considerable longer than
during off-peak hours, resulting in a much higher energy de-
mand.

2. Use of a standard driving cycle taken from literature

In this approach, standard driving cycles are taken from litera-
ture. These driving cycles are based on traffic measurements
from different cities. Examples of well-known standardised
driving cycles are the Braunschweig, New York City, Orange
County or Paris bus cycles. An overview of the characteris-
tics of various driving cycles can by found in [13]. Authors
of previous studies usually chose a driving cycle similar to the
conditions in their study area. Vilppo and Markkula [14] exam-
ined a few standard driving cycles and then used the one which
included a similar number of bus stops to the city in which their
study was based. Possible differences in traffic conditions, es-
pecially during peak hours, were not considered, however. La-
junen and Lipman [4] carried out simulations in six different
driving cycles. They then applied the one that best matched the
bus line’s characteristics to each line. A model of the energy de-
mand of buses was derived from a standard driving cycle in [15]
and used on a small network of seven bus lines.

Standard driving cycles include variations such as driving on
a highway or in congested traffic. However, applying a standard
driving cycle in a different city will inevitably lead to discrepan-
cies. As in the first approach, traffic conditions on different bus
routes are not identical, especially in large bus networks. Great
variations can also occur between different types of bus ser-
vices, e.g., feeder, trunk or express services. Nylund et al. [13]
examined several driving cycles for heavy-duty vehicles includ-
ing buses. They concluded that the performance of these driv-
ing cycles can differ a lot from real-life conditions, especially
for bus services, since buses have a low average speed with
many stops and high deceleration / acceleration before / after

reaching a stop. Shen et al. [16] described how a new driv-
ing cycle can be constructed based on data collection from real
operation. They also note that “constructing a typical driving
cycle which can reflect the actual driving characteristics of the
vehicle means a lot to the credibility of the test results”. How-
ever, the steps necessary to create this adapted driving cycle are
not simple and require a significant number of measurements.
Moreover, this has to be repeated for each bus route.

3. Detailed measurements of driving profiles

In order to obtain more accurate values for the energy demand
of buses, measurement equipment can be installed in buses
to record the energy demand with a high temporal resolution.
Simulation models can be derived from the results. Sinhuber
et al. [17] developed a longitudinal dynamics model in a case
study for a loop line in Aachen, Germany. The characteristics of
the considered bus route were derived from waypoints (geoco-
ordinates) defined via an Internet mapping service. Route char-
acteristics such as the stop duration and speed limit were subse-
quently added to the defined waypoints. However, it is unclear
whether this input data was added manually or if the process to
generate it was automated. Moreover, the methodology to de-
rive the actual speed profile from these “annotated” geocoordi-
nates was not described. The vehicle model was validated with
measurement data for the traction power taken from the opera-
tion of two serial hybrid buses operating on a bus line in another
city. The energy demand model was then applied to a variety
of bus lines from different cities in Germany. This model was
later used by Rogge et al. as a preprocessing step to calculate
the energy demand for bus routes in the city of Muenster, Ger-
many in [18] and for Aachen, Germany and Roskilde, Denmark
in [19]. However, the authors once again did not elaborate on
how the actual speed profile used in the longitudinal dynamics
model was generated. Ly et al. [20] recorded the velocity profile
of a single bus line in Berlin with a GPS sensor and used it to
create a similar energy demand model. The model was then val-
idated using data gathered from two electric buses by installed
equipment measuring the speed, auxiliary power and battery
state of charge with a frequency of 10 Hz. The results for the
commercial operation of nine electric buses on three routes in
Seoul city were presented in [21]. A single driving profile was
measured for each bus routes and used to calculate the energy
consumption. Zhou et al. [5] expressed concerns about the rep-
resentativeness of laboratory testing and test driving cycles and
noted that “the test cycles may not accurately represent real-
world conditions”. As part of a demonstration project, they
installed an onboard data collector in three models of BEBs
and recorded the speed and battery power during a test on an
8.8 km route in the downtown and business centre of Macao.
The energy demand of the buses was analysed under various
passenger loads and driving conditions. Prohaska et al. [22]
presented an evaluation of the deployment of 12 BEBs on a
26.8 km route in the San Gabriel and Pomona Valley region of
Los Angeles County, California, was presented. The authors
analysed various operating metrics in detail and concluded that
a good understanding of the overall duty cycle of electric vehi-
cles was important in order to determine the feasibility of their
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deployment. Gao et al. [23] used a large data set of second-
by-second measurements from three diesel buses, in Knoxville,
USA, which covered a mileage of nearly 71,500 km over 610
days. They evaluated the energy demand and charging needs of
city transit electric buses in this transportation network and sug-
gested that significant savings might be able to be achieved on
the total investment cost for the batteries if the buses were to use
flexible battery configurations and charging strategies depend-
ing on the individual driving characteristics of the bus routes.
They also cited a number of previous field-tests in their intro-
duction and noted that “these limited studies were conducted
only under relatively simple and limited test routes, which lack
complexity and variation of more extensive real-world driving
conditions”.

The approaches requiring field-test measurements are inher-
ently limited with respect to their scalability: measuring the
driving profile of each bus route may be manageable for small
bus networks, but for larger bus networks it rapidly becomes
impractical. In all of the cited studies, detailed measurements
were only carried out for a few buses. This leads to the same
problem of not considering all bus lines, some of which could
have significantly different characteristics. And several mea-
surements would have to be performed on each bus line to con-
sider traffic conditions.

This paper introduces a different approach comprising an en-
ergy demand model to help bus operators plan the electrification
of their existing networks. It aims specifically at overcoming
situations where high-resolution data is unavailable, without re-
sorting to oversimplified estimations that ignore real-world trip
characteristics. This model for BEB fleets is based on the com-
mon longitudinal dynamics formulation. It is adapted so that
it does not require high-resolution measurements of velocity
profiles. All it needs are records of arrival and departure time
of buses at each stop. This new approach takes into account
the variety of situations encountered in real operational condi-
tions while keeping the energy demand analysis tractable, even
at the full scale of a major bus network. This is achieved by
using network-wide data sets that can be easily derived from
data sources commonly collected by bus operators on the ba-
sis of existing operational data records. Examples include bus
fleet management systems, which record the position of each
vehicle at low resolution, or fare management systems, which
record alighting and boarding events for all passengers at all
bus stops. The use of such data sets enables bus operators to
apply the model to their existing networks as a whole and over
long periods of time.

In a case study, the described model is applied to a data set
from the public transport fare management system in Singa-
pore. The public bus network in Singapore comprises more than
350 different bus lines, with over 4000 buses in operation si-
multaneously during peak-hours. The energy requirements that
would have to be satisfied to operate an entire fleet of electric
buses on todays existing bus routes are estimated. The results
are visualised and analysed. The benefits of analysing their sta-
tistical distribution instead of focusing solely on average val-
ues or using standard driving cycles are highlighted. Finally,
a sensitivity analysis conducted on the model helps to deter-

mine which parameters have the most influence on the energy
demand estimation.

The benefits of the proposed approach are manifold. The
method is easily applicable to other bus networks and over-
comes a problem often encountered in practice: the unavail-
ability of highly-detailed data sets at large scales. It bridges a
methodology gap between assumptions ignoring real-world bus
trip characteristics and methods requiring high-resolution data.
The main contributions of this paper are:

1. Derivation of a model for the energy demand of electric
buses which does not require detailed driving profiles, but
takes into account the real-world bus route characteristics
and is accurate enough to yield realistic results

2. Application of the model on a real data set for the entire
public bus network of a megacity (Singapore)

3. Detailed analysis of the energy demand of every single bus
line over an entire day of operation

The rest of this paper is organised as follows. Section 2 de-
scribes the setup of the model including the synthetic driving
profile. The case study of the public bus network in Singapore
is introduced in Section 3. Results and discussion are presented
in Section 4. In Section 5, we show the results of the sensitiv-
ity analysis. Section 6 concludes the paper and provides a brief
outlook on future work.

2. Methodology

2.1. Nomenclature

Unless otherwise stated, a trip denotes a “bus stop to bus
stop” trip spanning one visited bus stop to the next in the fol-
lowing. Please note that a bus may skip some bus stops if there
are no passengers boarding or alighting at these stops, so that
a trip does not necessarily connect two consecutive bus stops
along the planned route. A journey denotes a one-way “ter-
minus to terminus” journey. A terminus is hereby defined as
the starting or ending stop of a bus route. Most bus lines have
two different termini (and buses drive back and forth between
those), whereas loop lines start and end at the same terminus.

2.2. Energy demand model

The energy demand model presented here is based on a com-
mon longitudinal dynamics model for electric vehicles [24].
The tractive force Ftr is calculated as follows:

Ftr = Fdrag + Froll + Fclimb + Finertia (1)

where:

• Fdrag = Kd v2 is the aerodynamic drag force, with Kd =

0.5 ρCd A. ρ is the mass density of air in kg/m3, Cd is
the drag coefficient, A is the reference frontal area of the
vehicle in m2 and v the speed of the vehicle in m/s (it is
assumed that the flow velocity of the air around the vehicle
is equal to the vehicle speed, i.e. wind speed is neglected).
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• Fclimb = Mg sin(α) is the grade force. M is the total mass
of the vehicle in kg, g is the gravitational acceleration
(9.81 m/s2) and α is the gradient of the road. The ele-
vation difference ∆h and the distance D between two stops
are used to calculate α, such that tan(α) = ∆h/D.

• Froll = Mg f cos(α) is the rolling friction. f is the rolling
resistance coefficient.

• Finertia = δMa is the inertia force resulting from the change
in stored kinetic energy in the vehicle (acceleration or de-
celeration). a is the acceleration of the vehicle. δ is a factor
to take into account the inertia of all rotating components
in the drivetrain (wheels, drive shaft, rotor of the motor...).

If data is available about the number of in-vehicle passengers,
the total mass of the vehicle M can be calculated as the sum of
the curb weight Mcurb and the total mass of the passengers on
board: M = Mcurb + npax mpax. Otherwise, an estimation of the
average number of passengers can be used.

Let Etr be the energy demand (or regeneration) due to the
tractive force on a trip between two consecutive stops:

Etr =

∫
η
(
Kdv(t)2 + Mg f cos(α) + Mg sin(α) + δMa(t)

)
v(t) dt

(2)
where η is an efficiency factor that takes into account the losses
in the inverter, motor, drivetrain including gearbox. When the
vehicle is braking (a(t) < 0) or driving down a sufficiently in-
clined road (sin(α) < 0), the value of the tractive force can be-
come negative. When this happens, electric vehicles are usually
able to convert and store part of the kinetic energy back in the
battery (regenerative braking). Thus, η needs to be calculated
differently depending on whether the tractive force is positive
(energy demand) or negative (energy regeneration):

η =


1

ηt ηPE ηm
for Ftr(t) > 0

rreg ηt ηPE ηm for Ftr(t) < 0
(3)

where ηt is the drivetrain and gearbox efficiency, ηPE the effi-
ciency of the inverter and ηm the efficiency of the motor, and
rreg is the regeneration factor, which determines how much of
the kinetic energy can be regenerated. This regeneration fac-
tor takes into account the fact that not all of the kinetic energy
can be recovered due to losses and limitations of the maximum
power for recharging the battery.

In addition to the energy related to the tractive force, the aux-
iliary power Paux needed for air conditioning and various auxil-
iary services (such as operating doors, powered steering, light-
ing, in-vehicle displays, etc.) needs to be taken into account.
In this paper, Paux is assumed to be constant over the driving
duration ∆ttrip as well as the dwell time ∆tdwell:

Eaux = Paux

(
∆ttrip + ∆tdwell

)
(4)

2.3. Synthetic driving profile
A synthetic driving profile that requires only the arrival and

departure times of buses at all visited stops is derived in the

v(t)

t

v1

t0 t1 t2 t3

a+ a-

d0 d1 d2

...

D'
D

(a) Case when the total distance D is long enough
for the coasting speed v1 to be reached.

v(t)

t

v1

t0 t1 t2 t3

a+ a-

d0 d2

vmax

...

D'
D

(b) Case when the coasting speed is
not reached because the total distance
D is too short.

Figure 1: Simplified speed profile

following. This profile aims at imitating urban driving condi-
tions, where buses often have to stop at intersections or traffic
lights and go through a succession of acceleration and deceler-
ation phases between each pair of stops. As explained in the
introduction, obtaining high-resolution measurements for the
driving profiles of all buses in order to calculate the integral
of equation (2) is impractical in large bus networks.

The duration of each trip between two visited bus stops ∆ttrip
and the dwell time at each stop ∆tdwell is calculated from ar-
rival and departure times. Combined with the known distance
D between the stops, this yields the average speed of the trip
vavg = D/∆ttrip.

In order to better reproduce the real driving conditions to
which a bus is exposed, a simplified speed profile is derived
dynamically for each trip between each pair of bus stops so that
it matches the available real-world data (inter-stop distance D
and trip duration ∆ttrip). It consists of a succession of nh + 1
identical phases of the length D′ = D/ (nh + 1). nh corresponds
to the number of intermediate halts between two stops, e.g. in
order to stop at a traffic light or give way at an intersection.
Each phase starts with constant acceleration a+ over distance
d0, followed by constant speed v1 over distance d1 and comes
to a halt with constant deceleration rate a− over distance d2, so
that d0 + d1 + d2 = D′ (see Figure 1).

The values of nh and v1 are chosen dynamically based on the
measured average speed vavg. For nh, it is assumed that there
is at least one intermediate halt per trip, and one more for each
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5 km/h-step that vavg takes under 25 km/h1. The coasting speed
v1 is set for each trip so that v1 = 1.5 vavg, but with a lower limit
of 15 km/h and an upper limit defined as the maximum between
vavg and 60 km/h. By way of illustration, if the duration of a
given trip was measured as being longer than usual (due to a
higher road congestion for example), the synthetic profile will
take this into account by using a lower coasting speed (v1) and
adding more intermediate halts (nh). Inversely, if the measured
trip duration was shorter than usual, then vavg will be higher, as
will v1, while the number of intermediate halts is reduced.

This simplified velocity profile permits the analytical inte-
gration of Equation (2) and elimination of the time component
so that Etr only depends on known parameters and the trip vari-
ables from the real-world data set (D and ∆ttrip). The integral is
separated into three parts, one per phase: acceleration, coasting
and deceleration. Each part is integrated on the assumption that
the acceleration is constant (5).

Etr = (nh + 1) E′tr

= (nh + 1)
(
E′tr, a(t) = a+

+ E′tr, a(t) = 0 + E′tr, a(t) = a−

) (5)

This results in three formulas2 (6a), (6b) and (6c).

E′tr, a(t) = a+
= η d0

(
Mg f cos(α) + Mg sin(α) + Kd a+ d0 + δMa+

)
(6a)

E′tr, a(t) = 0 = η d1

(
Mg f cos(α) + Mg sin(α) + Kd v1

2
)

(6b)

E′tr, a(t) = a− = η d2

(
Mg f cos(α) + Mg sin(α) − Kd a− d2 + δMa−

)
(6c)

The distances d0, d1 and d2 are calculated as follows: if D′ is
sufficiently large to reach the coasting speed (i.e. d1 > 0 in (7b),
see Figure 1a):

d0 =
v2

1

2 a+

(7a)

d1 = D′ − (d0 + d2) = D′ −
v1

2

2

(
1
a+

−
1
a−

)
(7b)

d2 = −
v1

2

2 a−
(7c)

otherwise (see Figure 1b):

d0 = D′
a−

a− − a+

(7d)

d1 = 0 (7e)

d2 = D′
a+

a+ − a−
(7f)

1i.e. nh = 1 for vavg > 25 km/h, nh = 2 if 20 6 vavg < 25 km/h, nh = 3 if
15 6 vavg < 20 km/h, etc.

2The derivation of these formulas is available in a supplementary document.

D Δt trip Δt dwell

Gather bus operation data
(time of arrival and departure at each bus stop)

Etotal (trip)

Calculate energy demand of each stop-to-stop trip

Etotal (journey)

For each vehicle, aggregate energy demand 
for a terminus to terminus journey

Calculate statistics for each bus line

Figure 2: Overview of the steps to calculate the energy demand of a bus fleet
based on operation data.

The total energy demand between two consecutive stops
(Etotal,trip) can finally be calculated as the sum of the energy de-
mand for each phase plus the auxiliary energy demand (8).

Etrip
total = Etr + Eaux (8)

Consequently, the energy demand for a terminus-to-terminus
journey (Etotal,journey) is the sum of the energy demand of the
individual stop-to-stop trips (9).

E journey
total =

∑
trip

Etrip
total (9)

2.4. Summary of the derivation of the energy demand

Figure 2 summarises the steps taken to evaluate the energy
demand of a complete bus fleet. The graph in Figure 3 illus-
trates how all of the required variables for the equations are
derived from a small subset of input variables that can easily be
obtained by operators. The required input data from real-world
operation is limited to three variables:

• the distance between two consecutively visited stops (D),

• the trip duration (∆ttrip) and

• the dwell time (∆tdwell).

The trip distance is known because the bus routes are fixed.
Trip duration and dwell time are obtained directly from the
recorded arrival and departure times at bus stops.

Two additional input variables from real-world measure-
ments are also useful, but not absolutely necessary. If available,
the number of passengers on board (npax) can be used to com-
pute a better estimate of the total mass of the vehicle. Other-
wise, assumptions about the average bus occupancy rate can be
used to calculate M. The gradient of the road (α) between two
stops also improves the accuracy of the energy demand estima-
tion when it is known. Unless the bus network under consider-
ation contains significant variations in elevation, the impact of
this factor is limited (as is the case in Singapore).
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E′tr

Mcurb | mpax

D

∆ttrip

v1

Etrip
total

M

Paux

Eaux

∆tdwell

D′

η

nh

rreg | ηt | ηPE | ηm

α

npax

Etr

d0 | d1 | d2

a+ | a−

vavg

g | f | Kd | δ

(5)

(4)

(4)

(6)

(8)

(6)

(7)

(7)

(6)

(6)

(6)

(6)

(8)

(6)

(7)

(5)

(4)

(3)

Figure 3: Graph illustrating how input data and input parameters are used to calculate the energy demand. The input data from low-resolution records of bus trips
are shown inside green rectangles. The blue rectangles represent the input parameters that are static. Intermediate variables are displayed inside ellipses. The red
box represents the total energy demand for one stop-to-stop trip. Numbers in parentheses along the edges correspond to the equation numbers in this paper.

3. Application of the model to a case study of Singapore

3.1. Context of the case study

Being an island city-state with limited space, it is difficult
for Singapore to allow a further increase in the number of pri-
vate cars. With effect from February 2018, the annual vehi-
cle growth rate for all private passenger cars and motorcycles
was set to zero (down from 0.25 % in 2017). This is enforced
by a quota system, which limits the number of vehicle regis-
trations [25]. Accordingly, current policies aim at further ex-
tending the public transport infrastructure and quality of its ser-
vice in order to incite travellers to choose public transport over
private vehicles. The Land Transport Master Plan 2013 [26]
sets out a number of goals to be achieved by 2030, includ-
ing increasing the share of journeys by public transport during
peak hours from 63 % to 75 %. Similar to the trend seen in
other cities, the Land Transport Authority (LTA) of Singapore
is showing a growing interest in the use of hybrid and electric
buses [27, 28]. In December 2017, LTA published a tender for
procuring 50 hybrid electric and 60 fully electric buses for de-
livery in late 2019 and early 2020 [29].

Singapore’s public bus network is large, with over 350 bus
routes and a fleet of more than 5000 buses. Our model for the
energy demand of buses is demonstrated using real-world data
from this full-scale network.

3.2. Data basis

In Singapore, passengers who use public transport pay fares
based on the distance travelled. Every passenger must tap their
contactless card when boarding a bus and then tap it again upon
alighting. The basis for this energy demand analysis is the
“CEPAS” data set provided by the Land Transport Authority
(LTA) of Singapore. This contains anonymised records of all

tap-in and tap-out fare transactions in the public transit system
over a period of three months (from August to October 2013).
The data set placed at our disposal was limited to the week-
days from Mondays to Thursdays. In comparison, Fridays and
weekends have a reduced ridership, lower number of active bus
services and lower traffic congestion. Hence, the energy de-
mand would be lower than in the results presented in Section 4.

The data is aggregated at the level of each individual stop-to-
stop trip. Instead of one record per tap-in or tap-out event, the
data set contains one record per stop at a bus stop, for each indi-
vidual bus, with the aggregated sum of boarding and alighting
passengers at that stop. The arrival and departure time at each
bus stop, as well as the dwell time, are calculated on the basis of
the time between the first and last tap-in and/or tap-out event at
each stop. One example of the content of the data set is shown
in Table 1. Since the data set only covers data for the passen-
ger fare payment system, no information about off-service trips
(also known as dead-heading) can be derived from it. Thus, the
effect of dead-heading on the energy demand is not included in
the results. It is expected to be small at the system level and
could be modelled as an additional correction factor based on
the ratio of dead-heading mileage to revenue service mileage.

Table 2 lists the values chosen for the constant parameters
in this study. Three types of buses are operated in the pub-
lic transport network of Singapore: single-decker bus (SD),
double-decker bus (DD) and articulated bus (AB). Table 3 lists
the values for the parameters that depend on the vehicle type
(Mcurb, A and Paux). Table 4 lists the variables whose values are
obtained from the “CEPAS” data set and change for each indi-
vidual stop-to-stop trip. In order to calculate the road gradient
α, the elevation difference between two consecutively visited
stops (∆h) was derived from NASA’s Shuttle Radar Topography
Mission (SRTM) data [30]. In Table 2 and 3, the values were
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Table 1: Excerpt of the input data for the first 5 stops visited during a journey on bus line 100.

Current stop number 11009 11189 11179 11169 11049 . . .
Arrival time 15:33:01 15:35:34 15:36:55 15:38:02 15:41:25 . . .
Passengers boarding 7 1 2 11 0 . . .
Passengers alighting 0 1 0 4 4 . . .
Delta passengers 7 0 2 7 −4 . . .
In-vehicle passengers npax 7 7 9 16 12 . . .
Dwell time ∆tdwell 00:00:27 00:00:07 00:00:08 00:00:24 00:00:22 . . .
Departure time 15:33:28 15:35:41 15:37:03 15:38:26 15:41:47 . . .
Next stop number 11189 11179 11169 11049 11039 . . .
Trip distance (m) D 662 236 600 948 384 . . .
Trip duration ∆ttrip 00:02:06 00:01:14 00:00:59 00:02:59 00:01:09 . . .
Average trip speed (km/h) vavg 18.9 11.5 36.6 19.1 20.0 . . .
Vehicle type SD SD SD SD SD . . .

Table 2: Constant parameters used in the case study

Parameter Value Unit

Cd 0.7 −

ρ 1.18 kg/m3

f 0.008 −

ηt 0.97 −

ηPE 0.95 −

ηm 0.91 −

δ 1.1 −

rreg 0.6 −

mpax 75 kg

a+ 1 m/s2

a− −1.5 m/s2

Table 3: Parameters used in this case study depending on vehicle type

Parameter Vehicle type Unit

SD DD AB

Mcurb 12.5 17.5 18.5 t
A 8.3 10.35 8.3 m2

Paux 10 15 15 kW

chosen so that they are indicative of typical parameter values
found in literature.

4. Results and discussion

4.1. General statistics for the bus fleet

The results in this section are based on a four-day subset of
the original data set from 26 to 29 August, 2013. It consists
of 4.9 million bus stop to bus stop trips, representing 163,826
terminus to terminus journeys by 350 different bus lines and
4135 different buses over a total mileage of more than 3 million
km. Applying the model introduced in Section 2.2 to this data

Table 4: Variables derived from the data set

Variable Description

D Distance between two consecutively visited
stops

∆ttrip Duration of a stop-to-stop trip
∆tdwell Dwell time at a stop
vavg Average speed during the stop-to-stop trip
npax Number of passengers on the bus
∆h Difference in elevation between two

consecutively visited stops
Vehicle type Type of the vehicle (SD, DD, AB)

set results in an identically-sized data set containing the energy
demand for each of these 4.9 million stop-to-stop trips. There-
after, the data is aggregated at the level of bus journeys, then at
the level of bus lines and finally at the system level.

Based on this historical data set, a fleet of electric public
buses in Singapore would require about 1.4 GWh (5 TJ) in total
per day for revenue service, or 1.9 kWh/km on average (includ-
ing all vehicle types). Taking into account the number of pas-
sengers on the bus for each trip, the median efficiency is 101 Wh
(364 kJ) per passenger-kilometre. This hypothetical energy de-
mand represents about one percent of the current average daily
total electricity consumption of Singapore, which amounted to
133 GWh per day in 2016 [31]. Since no statistics are avail-
able on the total energy consumption of the current public bus
fleet in Singapore, a direct comparison of the results with the
current diesel bus population is not possible. However, it can
be assumed that a typical single-decker diesel city bus in an ur-
ban driving cycle has an average fuel efficiency of around 40 to
50 L/100 km (including air conditioning and subject to driving
conditions), corresponding to 4 to 5 kWh/km [32–34]. Com-
pared with electric buses, diesel buses thus consume between
two and three times more energy. This is mostly due to the
lower efficiency of heat engines and the lack of energy regen-
eration capabilities. For example, Nylund et al. [33] measured
the fuel economy of various diesel bus models and compared
it to the mechanical work actually performed (measured by a
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dynamometer). They found that whereas diesel engine manu-
facturers report efficiencies up to 45 %, the measured efficiency
on urban driving cycles was between 21 % and 26 %. In com-
parison, this case study assumes that the electric motor has an
average efficiency of 91 %, and can regenerate about 60 % of
the braking energy.

Table 5 summarises the results aggregated at the level of
terminus-to-terminus journeys. The share of total distance
driven and the number of buses for the three main types of
vehicles are provided to indicate the relative contribution of
each vehicle type to the results. About two thirds of the to-
tal mileage were covered by single-decker buses, one quarter
by double-decker buses and the rest by articulated buses. The
median values (outside parentheses) obtained by the model for
the specific energy demand are 1.6 kWh/km, 2.3 kWh/km and
2.5 kWh/km for single-decker, double-decker and articulated
buses respectively. The values of the median absolute deviation
(MAD) are shown in parentheses. The median value of the total
energy demand for a terminus-to-terminus journey ranges from
28.7 kWh to 45.0 kWh, depending on the vehicle type. Table 6
shows the daily mileage and energy demand per bus. The me-
dian value of the daily distance driven per bus is 186 km with a
median energy demand of 336 kWh.

4.2. Discussion of the variability observed in real-world bus
networks

The values presented in Tables 5 and 6 have high variances,
as can be seen from the median absolute deviation (MAD)
shown in parentheses. This is due to the nature of large public
bus networks such as Singapore’s, which are inherently hetero-
geneous. Real conditions of operation vary a lot between bus
lines: some lines are more than 30 km long, while others cover
routes of just a few kilometres; some ply routes in the city cen-
tre whereas others include motorway sections, etc. Moreover,
a given bus line exhibits variations over the day: During morn-
ing and evening peak hours, more passengers are boarding and
alighting, leading to prolonged dwell times at stops. Peak-hour
road traffic also leads to an increase in the trip duration between
stops.

For these reasons, estimating the characteristics and require-
ments of a bus network solely by means of average or median
values is inaccurate. A single value cannot accurately reflect the
high variability of real-world situations. A workaround could
be to use extreme values (worst-case scenario). This is not an
ideal solution either, because a small number of extreme cases
from real operation will significantly skew the results. Hence, if
the probability of occurrence of extreme values is not properly
analysed, this approach may lead to over-sizing the system.

In the following subsection, we will elaborate on the char-
acteristics of the public bus routes in Singapore and how these
high variations came about in more details.

4.3. Characteristics of the bus routes
Figure 4 illustrates the variance for the characteristics of the

public bus routes in Singapore. The distribution of the distance
travelled on a terminus-to-terminus journey is shown in Fig-
ure 4a. The median value is 18.4 km, but the distribution is
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Figure 4: Distribution of key characteristics for the bus routes per bus journey
(terminus to terminus). (Box plot whiskers set at 2nd and 98th percentiles)

quite wide with a median absolute deviation (MAD) of 10 km.
Excluding outliers, the 2nd and 98th percentiles of the distribu-
tion are 2 km and 45 km respectively. By way of reference, the
main island of Singapore measures 50 km from west to east and
27 km from north to south.

The number of bus stops per kilometre (Figure 4b) influences
the average speed and the overall energy demand of buses. On a
route with a high number of stops per kilometre, the frequency
of energy-intensive acceleration phases increases, as does the
share of idle time, thus increasing the auxiliary energy demand.
The median value for the data set amounts to 1.7 stops per kilo-
metre (corresponding to a median distance of 588 m between
two consecutively visited stops) with a MAD of 0.5.

The average speed of the bus on a journey (Figure 4c) de-
pends on the traffic conditions throughout the day (such as
peak and off-peak hours) and on whether the route passes
through sections of the road network which are more likely to
be congested than others. The median values of the data set
are 17.5 km/h and 15.2 km/h, with a MAD of 3.6 km/h and
2.8 km/h during off-peak and peak hours respectively.

The graphs in Figure 4 clearly show the heterogeneity of real-
world bus routes and high variations in their characteristics that
lead to a noticeable variability of the energy demand. This un-
derlines the necessity of using a more sophisticated approach
that takes these characteristics into account when calculating
the energy demand.
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Table 5: Driving statistics for terminus-to-terminus journeys (median value with median absolute deviation shown in parentheses)

Vehicle type

All SD DD AB

Number of buses in the data set 4135 2683 1149 303

Share of total distance driven 100 % 68 % 25 % 7 %

Share of total energy demand 100 % 59 % 32 % 9 %

Distance per journey (km) 18.4 (10.4) 18.4 (10.6) 20.5 (8.8) 14.4 (10.3)

Speed (km/h) 16.7 (3.5) 16.7 (3.7) 16.6 (3.2) 16.4 (3.3)

Specific energy demand (kWh/km) 1.75 (0.41) 1.62 (0.24) 2.34 (0.34) 2.47 (0.38)

Total energy demand per journey (kWh) 32.2 (19.2) 28.7 (16.6) 45.0 (21.4) 34.2 (20.7)

Table 6: Driving statistics per bus for one day of operation (median value with median absolute deviation shown in parentheses)

Vehicle type

All SD DD AB

Daily mileage (km) 186 (67) 194 (67) 169 (68) 172 (65)

Total energy demand per day (kWh) 336 (120) 315 (106) 401 (161) 408 (153)
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Figure 5: Distribution of the specific energy demand averaged over a journey
(terminus to terminus) by vehicle type. (Box plot whiskers set at 2nd and 98th

percentiles)

4.4. Energy demand of the electric bus fleet

This subsection presents the specific energy demand of all
bus types, the energy demand per journey and day, and aggre-
gated per bus line.

4.4.1. Specific energy demand
Figure 5 shows the distribution of the specific energy de-

mand categorised by vehicle type. The dispersion of the val-
ues is a consequence of the variety of bus routes and driv-
ing conditions, as shown in the previous subsection. The

specific energy demand obtained in our model ranges from
1.1 to 2.2 kWh/km, with a median value of 1.6 kWh/km for
single-decker buses. For double-decker and articulated buses,
the range is 1.6 to 3.2 kWh/km, with a median value of
2.3 kWh/km and 2.5 kWh/km respectively.

In comparison, measurements during on-road testing of two
models of 12 m electric buses in Macao under various passen-
ger loads and with air conditioning switched on resulted in
average specific energy demand values ranging from 1.62 to
2.11 kWh/km in [5]. Gao et al. [23] reported simulated values
ranging from 1.24 to 2.48 kWh/km for an electric bus model
with characteristics similar to those of our single-decker model
and using four standardised driving cycles. For heavier bus
models (DD and AB), values ranging from 2.1 to 3.4 kWh/km
were obtained in [17] for articulated city buses with a length
of 18 m using a detailed longitudinal dynamics model on five
routes in Aachen and Muenster, Germany. In [18], simulations
using the bus network of Muenster, Germany, for an articulated
bus model resulted in specific energy demand values ranging
from 2.26 to 2.69 kWh/km, with an average of 2.47 kWh/km.
These values are consistent with the distribution observed in
our results and suggest that the simplified model presented in
this work is able to provide results similar to those that could
be obtained with a more detailed model using high-resolution
velocity profiles.
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Figure 6: Cumulative distribution of the energy demand by vehicle type. (Box
plot whiskers set at 2nd and 98th percentiles)

4.4.2. Energy demand per journey
Figure 6 shows the cumulative distribution of the energy re-

quired for a terminus-to-terminus journey (6a) and for a day
of operation (6b). This representation easily allows quantita-
tive statements to be made on the share of journeys that can
be covered with a given energy amount, or conversely, the en-
ergy required to cover a given percentage of journeys to be de-
termined. For example, Figure 6a shows that approximately
80 % of the journeys require less than 41 kWh for single-decker
buses, 49 kWh for articulated buses, and 64 kWh for double-
decker buses.

To put these amounts of energy in context, with fast charging
stations at the end of the bus routes, the time needed to recharge
these amounts of energy at a charging power of 400 kW would
be less than 6 min, 7.5 min and 10 min respectively. This re-
sult suggests that the current layover time of buses at bus ter-
mini could be used to recharge the energy spent on the previous
journey in most cases.

4.4.3. Energy demand per day
Another important metric is the accumulated energy used

by a bus to cover all of its journeys in one day of operation.
This metric can be used to determine the battery capacity of the
BEBs when the charging strategy consists of overnight charg-
ing at depots only. The cumulative distribution of the daily en-
ergy demand for each vehicle type is shown in Figure 6b. The
range of values is quite large. On current operational schedules
and routes, single-decker BEBs would require 100 to 550 kWh
(median: 315 kWh), and double-deckers 150 to 650 kWh (me-
dian: slightly over 400 kWh) per day. Some articulated buses
(less than 10 % or about 30 buses) require more than 600 kWh
and up to 900 kWh per day. These buses are operated on small
feeder loop lines, but with very long driving times and low driv-
ing speeds on average, which explains the high energy demand.

Considering these daily energy demand values, choosing
overnight charging as a charging strategy would require equip-
ping BEB with very large batteries. This would most likely be
costly and more inefficient due to the added mass disadvantage
compared to opportunity charging.

4.4.4. Energy demand aggregated by bus line
The previous results focused on the energy demand at the

level of individual vehicles only. Any given bus line is served
by a number of buses with different types of vehicle, drivers
and traffic conditions. Hence, the amount of energy required
can vary significantly over time. Variations between different
bus lines are also significant.

To better understand the energy requirements of each bus
line, the data previously calculated for each vehicle was
grouped and aggregated by line number. In the following, we
show how this aggregation provides detailed insights into the
energy demand patterns of bus lines, and how this helps to iden-
tify which lines would be better suited for electrification and
which ones could pose more challenges.

Figure 7 compares the daily energy demand patterns of three
bus lines. Line 961 (Figure 7a), is characterised by a higher en-
ergy demand during peak hours (around 7 a.m. for the morning
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(a) Bus line 961
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(b) Bus line 100
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(c) Bus line 112

Figure 7: Energy demand of single-decker buses for a terminus-to-terminus journey for bus lines 961, 100 and 112 over the day, with hourly statistics. The hourly
median energy demand is depicted by black bars, while the 2nd and 98th percentiles are represented by green and blue bars respectively.
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Figure 8: Energy demand for a terminus-to-terminus journey aggregated by
bus line. Each bus line is represented by three points representing the median
(blue), 2nd percentile (green) and 98th percentile (red) of the energy demand
values observed for this line.

peak and 6 p.m. for the evening peak) due to high numbers of
passengers (increasing the mass of the vehicle) and increased
road congestion. Conversely, the energy demand is below aver-
age in the evening (after 9 p.m.) as both the number of pas-
sengers and the traffic on the road are reduced. The hourly
median energy demand for this line varies between 39 kWh
near midnight and 62 kWh at 6 p.m., representing a variation
of −29 % and +13 % around the daily median value (55 kWh)
respectively. The spread between the best and worst case (in
green and blue) is even more important. Most lines follow a
similar pattern but with different levels of variation over the
day (changes of the median value) or variance for a given time
of day (spread between best and worst case). Line 100 (Fig-
ure 7c) also shows an increased energy demand during peak
hours, but with a lower variance. In comparison, line 112 (Fig-
ure 7c) shows a more constant median energy demand over the
day with an even lower variance than Line 100.

Figure 8 shows the median, 2nd and 98th percentiles of the
energy demand values observed for each bus line are shown as
a function of the route length. The energy demand appears to be
roughly proportional to the distance driven, but each line shows
significant variability. This confirms the fact that a consider-
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Figure 9: Cumulative distribution of the median, 2nd and 98th percentile values
of the energy demand for a terminus-to-terminus journey aggregated by bus
line.

ation of the route length alone is not sufficient to accurately
predict the energy required to operate an electric bus line.

Figure 9 shows the cumulative distribution of the values
shown in Figure 8. This graph provides quantitative insights
into the percentage of bus lines whose energy requirements per
journey are less than a given value. In the worst case (red
curve), for example, around 50 % of the bus lines (representing
roughly 175 lines) require less than 40 kWh for one terminus-
to-terminus journey, and 80 % require less than 60 kWh. This
amount of energy could be recharged in less than 6 min (re-
spectively 9 min) if 400 kW charging power were available at
the bus terminus. An overview of key values from this graph is
provided in Table 7.

Figure 10 provides a practical example of how the results can
be further analysed to identify which bus lines have the best po-
tential for electrification and which ones will pose the greater
challenges. It could be used by bus operators and authorities
to set up a roadmap for the electrification of the bus network.
Since the arrival and departure time at bus stops and termini of
each bus is known from the data set, it is easy to calculate how
long each bus stays inside the termini before departing for an-
other journey. In Figure 10, the median energy demand is com-
pared with the median idle time of buses for each bus line. The
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Table 7: Energy requirements for a terminus-to-terminus journey for a given
cumulative percentage of bus lines. For example, 25 % of the bus lines have a
median energy demand lower than 18 kWh.

Cumulative percentage
of bus lines

Energy demand per journey

median 98th percentile

25 % ≤ 18 kWh ≤ 23 kWh
50 % ≤ 31 kWh ≤ 40 kWh
75 % ≤ 40 kWh ≤ 52 kWh
95 % ≤ 60 kWh ≤ 80 kWh
100 % ≤ 88 kWh ≤ 95 kWh
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Figure 10: Median energy demand for one journey compared to the median
idle time at the terminus per bus line. Each black dot represents one bus line in
Singapore. The coloured areas indicate the zones where the energy spent on a
journey can be recharged at a given charging power level during the idle time.
For example, if a charging power of 50 kW is available, bus lines inside the blue
area in the lower right could recharge during their layover time.

Table 8: Parameters for the sensitivity analysis

Parameter Low Base High Unit

Mcurb 10 12.5 15 t
Paux 8 10 12 kW
f 0.006 0.008 0.010 −

rreg 0.5 0.6 0.7 −

a+ 0.7 1 2 m/s2

a− −1 −1.5 −2.5 m/s2

δ 1.07 1.10 1.13 −

Cd 0.6 0.7 0.8 −

mpax 70 75 80 kg

coloured areas indicate the zones where the energy spent on a
journey can be recharged during the idle time at a given charg-
ing power level. For example, if a charging power of 50 kW is
available, bus lines inside the blue area in the lower right could
recharge during their layover time (on average). The bus lines
inside the green area, however, would require at least 50 kW
and up to 100 kW of charging power to fully compensate the
energy spent on their route during layover time. The closer a
bus line is to the upper left corner, the harder it becomes to use
opportunity charging for this bus line with current bus sched-
ules. Following the introduction of BEBs, bus operators are
expected to adjust trip schedules to allow for enough time for
recharging.

5. Sensitivity analysis

Comparing the results with existing literature is difficult be-
cause each publication uses slightly different bus models, as-
sumptions and values for the constants. In this section, a sen-
sitivity analysis is performed on our model to gain a better un-
derstanding of how and why our results may differ from those
presented by other researchers and to identify which parameters
have the greatest influence on the results.

For the sake of brevity, this analysis is limited to the sensi-
tivity of the median specific energy demand per journey for a
single-decker bus. The “base” case corresponds to the parame-
ter and results from previous sections (see Table 2 and 3). Ta-
ble 8 lists “high” and “low” values for each parameter that were
chosen as being representative of a typical range of values that
can be found in literature. The results are shown in the form of
a tornado plot in Figure 11a. Additionally, a second sensitiv-
ity analysis was performed with a variation of ±10 % from the
“base” value for each parameter (Figure 11b).

From the results, it can be concluded that the parameters with
the greatest influence on the energy demand estimation are, in
decreasing order: the curb mass Mcurb, the auxiliary power Paux,
the rolling resistance factor f and the regeneration factor rreg.

The great influence of the mass is obvious and to be expected.
The impact of the auxiliary power too is already well-known
(see for example [5], [24, Figure 7b] and [35, Figure 6]) and
confirms the importance of taking air conditioning into consid-
eration when evaluating the energy requirements of BEBs. Nor
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Figure 11: Tornado plots of the sensitivity analysis for the median specific
energy demand per journey.

should the value chosen for the rolling resistance constant f ,
whose impact is largely predominant over aerodynamic drag
at the low speeds at which city buses operate, be underesti-
mated. Other energy demand studies often assume values of
either 0.01 [23, 24, 36] or 0.008 [20, 37], whereas literature
on friction losses for heavy-duty vehicles suggests that 0.008
is more in an upper range, with lower limits closer to 0.004
or 0.005 [38][39, page 83]. The value of 0.008 chosen in our
study is thus a conservative choice. Finally and as anticipated,
the value for the regeneration factor rreg has a noticeable effect
on the energy demand results too. Whereas literature on energy
regeneration factors for electric cars is relatively easy to find,
this is not the case for heavy-duty EVs. In [40], simulations
based on two driving cycles for an electric bus resulted in re-
generative braking efficiency factors ranging from 0.57 to 0.67.
It is still unclear which level of regenerative efficiency can be
achieved in real conditions by electric city buses. The remain-
ing parameters have little effect on the results compared to the
four mentioned above.

As described in Section 2.2, the difference in elevation be-
tween each pair of bus stops (∆h) was included in our energy
demand calculation. To assess the importance of this aspect in
the results, the model was run again with ∆h = 0 for all trips.
In the Singapore case study, the influence was negligible (differ-
ence of less than 0.01 kWh/km on the median specific energy
demand), which can be explained by the fact that Singapore is
a very flat country (95 % of the bus stop elevations are between
7 m and 37 m). Nevertheless, road gradients in other cities can
have a significant impact and should be taken into consideration
when evaluating EV energy requirements.

6. Conclusion and future work

Planning the introduction of electric buses in existing pub-
lic transport networks calls for careful consideration, including,
but not limited to: deciding which bus lines to electrify, choos-
ing an electric bus model and its battery capacity as well as the
charging strategy (opportunity charging versus overnight charg-
ing, for example). The first step for all of these considerations is
estimating the energy required to operate the existing bus lines
with electric buses. In large transportation networks, this can be
challenging to do in practice due to the lack of readily available
data describing the detailed driving profiles of each bus route.

In this paper, a simplified longitudinal dynamics model was
introduced, which overcomes this issue while facilitating the
use of existing real network-wide data sets. Unlike previous ap-
proaches, which either oversimplify the estimation, or require
high-resolution driving profiles, the model presented here only
requires information about the bus arrival and departure times
at each bus stop. This allows bus operators to use commonly
available data sources to estimate the energy requirements of
electric buses in their existing bus networks. Examples of such
data sources include low-resolution location records from a
fleet management system or data from the fare payment sys-
tem, which records when and where buses stop in order to pick
up or drop off passengers. By using real, large-scale data sets,
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this approach encourages an analysis of the statistical distribu-
tion of observed values instead of focusing on single numeric
values (usually averages). This enables more realistic insights
into the energy requirements of the bus network.

The model presented here was applied to a case study based
on a real data set covering the entire bus network of Singapore.
To the best of our knowledge, this is the first time that a detailed,
network-wide estimation of the energy demand of BEBs in a
large bus network of a megacity was performed on the basis of
real-world trip data.

It could be shown that despite using simplified velocity pro-
files, the proposed model yielded plausible and highly detailed
energy estimates that could be analysed in a variety of ways. In
the case study, a fully electric public bus fleet operating on cur-
rent bus routes would require about 1.4 GWh per day for rev-
enue service, which is about one percent of Singapore’s daily
electricity demand. The daily energy demand pattern for each
bus line was derived from the results. This information helps
to better understand the impact of varying driving conditions
on the energy demand of a bus line over the course of the day.
The results displayed a significant level of heterogeneity in the
energy requirements of various bus types and bus lines, even
for similar route lengths. This corroborates the necessity of
analysing the energy demand for each bus line individually on
the basis of real-world data.

Another example of a practical application of our approach
was classifying bus lines relative to their electrification poten-
tial with opportunity charging at termini. This can be used by
bus operators to prioritize the electrification of the lines with the
greatest potential. It was discovered that half of the existing bus
lines require less than 40 kWh per terminus-to-terminus jour-
ney in the worst case, and less than 31 kWh in the median case.
With fast charging capabilities becoming more widespread, this
represents only a few minutes of charging time. Thus, opportu-
nity charging at lines termini during layover time appears fea-
sible for a large number of existing bus lines.

Many other factors affect the feasibility of electric bus op-
eration and conclusions cannot be drawn solely on the energy
demand calculation. The focus of this study was to model the
energy requirements of large bus networks. However, this is
only the first step in planning the deployment of electric buses.
The findings from this analysis will be included in future work
to determine the necessary battery capacity, to design optimized
recharging strategies and to derive the charging infrastructure
requirements for electric buses in Singapore’s public transport
network. Furthermore, the charging profiles resulting from
these upcoming studies will be used to analyse the impact of
the deployment of electric buses on Singapore’s electric grid.
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